Functions and Graphs Harder Polar and parametric graphs

Some graphs are difficult to draw. You may use some software to help you. e.g. Winplot (<u>http://math.exeter.edu/rparris/</u>), GRAPES (<u>http://www.criced.tsukuba.ac.jp/grapes/</u>)

1. Sketch :

(a)	$\rho^2 = a^2 \cos 2\theta$		(b)	$\rho = a (1 - \cos \theta)$	(Cardoid)
(c)	$\rho=a\theta$	(Spiral of Archimedes)	(d)	$\rho=e^{a\theta}$	(Logarithmic spiral)
(e)	$\rho = a \sin 3\theta$	(Rose of 3 leaves)	(f)	$\rho = a \sin 2\theta$	(Rose of 2 leaves)
(g)	$\rho = a \sin \frac{\theta}{2}$		(h)	$\rho = b - a \cos \theta (b < a)$	(Limacon)
(i)	$\rho^2\theta=a^2$	(Lituus)	(j)	$\rho\theta=a$	(Hyperbolic spiral)
(k)	$\rho = sec \ \theta \pm a$	(Concoid of Nicomedes)			

- 2. Sketch the curve $\rho = 2a(1 + \cos \theta)$. Find the polar coordinates of the points in which the curve meets the line $2\rho \cos \theta + a = 0$.
- 3. Plot the graphs of
 - (a) $x = 2r \cos \theta + r \cos 2\theta$, $y = 2r \sin \theta r \sin 2\theta$ (Hypo-cycloid of 3 cusps) (b) $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$ (Folium of Descartes)
- 4. By using the given parametrization, plot the graphs of the followings :
 - (a) (Cissoid of Diocles) $y^2 (2a x) = x^3$ (y = tx) (b) (Hypocycloid of 4 cusps) $x^{2/3} + y^{2/3} = a^{2/3}$ (x = a sin³ θ)
- **5.** Plot the following graphs :

(a)
$$\rho = \cos 7\theta + 3$$
 (b) $\rho = \cos \frac{9}{10}\theta$ (c) $\rho = \cos \frac{3}{10}\theta$

(d)
$$\rho = \cos \frac{9}{4} \theta - \frac{1}{3}$$
 (e) $\rho = a (\cos \theta + 1)$ (f) $\rho = a \left(\cos \frac{7\theta}{2} + 1 \right)$

(g) $\rho = a\left(\cos\frac{7\theta}{2}\right)$ (h) $\rho = a\left(\cos2\theta + \frac{1}{3}\right)$ (i) $\rho = a\left(\cos\frac{7\theta}{2} + 4\right)$